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Abstract—This paper is interested in a numerical method,
we use the mini-element P1 − Bubble/P1 over triangles, as a
solver to the steady Brinkman flow equation with the Dirichlet
boundary condition in a heterogeneous porous media. We define
the necessary hypotheses to prove the existence and uniqueness
of the solution. An iterative solver for the global linear system
(Uzawa conjugate gradient method) is applied to accelerate the
approach solution. A series of numerical examples with Matlab
software demonstrates the effectiveness of this method for these
equations arising in modeling flow in anisotropic porous media.

Index Terms—Anisotropic porous media, Brinkman equation,
Uzawa algorithm, Mini-element P1 −Bubble/P1,

I. INTRODUCTION

In this paper, we propose to simulate the Brinkman equation
by the finite element methods, we use the mini-element
P1−Bubble/P1 (see [3, 4, 15, 16, 17]) in 2D. This element
for spatial discretization of the different mathematcal equations
is easy to use, practice since it allows for the use of equal-order
interpolation (the same mesh for velocity and pressure). Equal-
order interpolation is very useful in large-scale multi-physics
codes to solve different problems applied in different domains
(geology, engineering, ...). The Brinkman model describes
the viscous fluid creeping flow in a highly heterogeneous
porous medium [21]. This model has been studied by some
researchers. In [22] the authors propose new nonconforming
robust finite element spaces for the unknown variables (veloc-
ity, pressure) and detailed argument for the case of perturbation
solution. Priori and a posteriori error estimates to ensure the
mini-element to be uniformly stable are studies in [25]. Other
more methods, such as the Galerkin finite element method
in [24] and the multigrid method [23] are applied to the

Brinkman model without considering parameter dependence
of solution. A. Ern studies by finite element method (FEM)
different equations [17] and F. Brezzi, M. Fortin for mixed
Hybrid Finite Element Methods (MFEM, HFEM) see [15].
V. Giraut, P. A. Raviart uses the finite element method to
solve one of the important nonlinear problems Navier-Stokes
Equations [16].
The plan of this paper is as follows: In Section 2 we state
by define the model problem and hypothesis to proof the
existence and uniqueness of the fort and weak solution. The
next section 3 we introduce the mini-element approximation
P1 − Bubble/P1 to the Brikman system. The section 4 is
devoted to the algebraic system to this problem, since the
system has a big matrix we use ”Uzawa conjugate algorithm”
to accelerate the convergence of the solution. Numerical results
are discussed in Section 5.

II. THE MODEL PROBLEM

The Brinkman problem describes flow through a porous
media, and it can also be seen as a singular perturbation
problem. We can use this equation modeling flow fluid in
highly heterogeneous porous media see [19, 20]. Here we use
it to describe viscous flow fluid in a heterogeneous porous
media.

Let be Ω ⊂ Rd, (d = 2, 3) a bounded open set with Lips-
chitz boundary ∂Ω. The Brinkman system for heterogeneous
porous media is represented by the following equations:{

−∇ · (µ̃∇u) +∇p+ µK−1u = f in Ω,
∇ · u = 0 in Ω,

(1)
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with the Dirichlet boundary condition

u = 0 on ∂Ω. (2)

The vector u represents the velocity field, p the pressure
defined in the space L2 (Ω) and satisfy

∫
Ω
p dx = 0. We

assume that f the external volumetric force acting on the
fluid (f ∈ [L2 (Ω)]d). The function µ̃ is the Newtonian fluid
vescosity and the function µ is the physical dynamic viscosity
that defines the fluid under consideration (e.g., water, oil, etc.).
The vescosity µ̃ and µ are continuous bounded functions. The
matrix K define the permeability of the reservoir, the role of
permeability is to controls the directional movement and the
flow fluids rate of the reservoir in the formation and represents
reciprocal of residence which porous medium offers to fluid
flow. The K−1 is a tensor such that, there exist a two constants
b1, b2 > 0 checking:

b1φ
tφ ≤ φtK−1φ ≤ b2φ

tφ, φ ∈ Rd. (3)

and we assume that g ∈ [L2 (∂Ω)]d. Let introduce the spaces:

V = [H 1
0 (Ω)]

d, (4)

for the velocity field and

Q = {q ∈ L2 (Ω)/

∫
Ω

q dx = 0}. (5)

for the pressure equation. It’s simple to see that: the Brinkman
problem (1) has a unique solution (u, p) ∈ V × Q (see [18,
lemma 2.1]). To study the numerical solution of this problem
by finite element methods we will be first define the weak
formulation of the problem.
The weak formulation of the system (1) is to find (u, p) ∈
V ×Q such that:{

a(u, v) + b(v, p) = F (v) ∀v ∈ V,
b(q, u) = 0 ∀q ∈ Q,

(6)

where the bilinear form a(·, ·) is positive continuous coercive
defined by:

a(u, v) =

∫
Ω

µ̃∇u∇v dx+

∫
Ω

K−1µu.v dx, (7)

the bilinear form b(·, ·) is continuous and satisfies the inf −
sup condition (i.e there exists a constant β > 0 such that,
supv∈V

b(q,v)
∥v∥V

≥ β ∥ q ∥Q, ∀q ∈ Q) defined by:

b(v, p) = −
∫
Ω

p∇ · v dx, (8)

and the second member F (·) is a linear continuous function
defined by:

F (v) =

∫
Ω

f · v dx. (9)

Now, we provide the spaces V and Q with the following
norms:

∥ u ∥V = a(u, u)
1
2 , ∀u ∈ V, (10)

and

∥ q ∥Q=
(∫

Ω

| q |2 dx
) 1

2

, ∀q ∈ Q. (11)

It’s simple to prove that the norm ∥ · ∥V is equivalent to
∥ · ∥H1 .

Theorem 1 under the assumption (3) the system (6) has
unique solution.

proof. This result is direct consequence of the properties of
bilinear forms a(·, ·), b(·, ·) and the linear form F (·) (see [3]
for more details).

III. THE MINI-ELEMENT METHOD

In this section we discretize the Brinkman problem by the
finite element, we use the pair P1−Bubble/P1 for more detail
see [1].

Fig. 1. The mini-element P1−Bubble/P1 velocity (left) and pressure (right).

Let Th be a triangulation of Ω, we denote the discrete space
associated with the bubble :

Bh = {vh ∈ C(Ω̄) ∀T ∈ Th , vh|T = xbT }, (12)

We defined the discrete function spaces :

Vih = {vh ∈ C(Ω̄), vh|T ∈ P1(T ); ∀T ∈ Th, vh/∂Ω = 0},
(13)

for i = 1, · · · , d and

Qh = {qh ∈ C(Ω̄) : qh|T ∈ P1(T ); ∀T ∈ Th,

∫
Ω

qhdx = 0}.
(14)

where P1(T ) is the set of all 1-order polynomials on triangle
T .
Let

Xih = Vih ⊕Bh, (15)

and
Xh = X1h ×X2h × ...×Xdh. (16)

Then, the P1 − Bubble/P1 finite element approximation of
problem is will finding (uh, ph) ∈ Xh ×Qh such that:

{
a(uh, vh) + b(vh, ph) = F (vh) ∀vh ∈ Xh,
b(qh, uh) = 0 ∀qh ∈ Qh.

(17)

We introduce a set of vector basis functions {ϕi} of the
velocity uh and the pressure ph, so that :

uh =

d+1∑
i=1

uiϕi + ubϕb, ph =

d+1∑
i=1

piϕi,

where ui and pi are nodal values of uh and ph while ub is
the bubble value.



The basis functions in the reference element are defined by
[4] :

ϕ1(x) = 1− x− y, ϕ2(x) = x, ϕ3(x) = y,

ϕb(x) = 27

3∏
i=1

ϕi(x).

in a two dimensions and

ϕ1(x) = 1− x− y − z, ϕ2(x) = x, ϕ3(x) = y,

ϕ4(x) = z, ϕb(x) = 256

4∏
i=1

ϕi(x),

in a three dimensions.

IV. THE LINEAR SYSTEM

To obtain the numerical solution of the Brinkman equation
by mini-element P1 − Bubble/P1, we replace velocity and
pressure approximated equations in the system.
We set :

ūi =

[
ui
uib

]
, Fi =

[
fi
fib

]
, i = 1, · · · , d.

Using (17), we obtain the following algebraic form

KU = B. (18)

Where

K =

K 0 Bt
1

0 K Bt
2

B1 B2 0

 , U =

u1u2
p

 , B =

F1

F2

0

 ,
in 2D and

K =


K 0 0 Bt

1

0 K 0 Bt
2

0 0 K Bt
3

B1 B2 B3 0

 , U =


u1
u2
u3
p

 , B =


F1

F2

F3

0

 ,
in 3D.

Where K =M+S, with M and S are the mass matrix and
stiffness matrix respectively, Bi is the divergence submatrix,

Bi = −(qi, ∂iuih)Ω , i = 1, · · · , d.

and we define the element matrices and vectors:

M̄ij =

∫
T

µ̃∇ϕi∇ϕjdx, S̄ij =

∫
T

K−1µϕiϕjdx,

B̄ij = −
∫
T

∂1ϕiϕjdx−
∫
T

∂2ϕiϕjdx,

f̄i =

∫
T

fϕidx.

Assembling the element matrices over the triangulation Th,
we obtain the global matrices

M = (Mij), S = (Sij), B = (Bij), Fi = (fi).

Where,
Mij =

∑
T

M̄ij , Bij =
∑
T

B̄ij ,

Sij =
∑
T

S̄ij , fi =
∑
T

f̄i.

To solve the big system it’s possible to use an iterative solver
for the global linear system, in this study we use Uzawa
conjugate gradient Algorithm, this solver applied for the linear
system: [

A Bt

B −C

] [
U
P

]
=

[
F
Fb

]
, (19)

where C is symmetric positive semi-definite and A is sym-
metric positive definite block diagonal matrix. The augmented
Lagrangian operator define by:

L(U,P ) =
1

2
U tAU −F tU +P tBU − 1

2
P tCP −FbP, (20)

since A is symmetric positive definite and C is symmetric
positive semi-definite, The saddle-point for operator (20) ex-
ists. As result the system (19) characterizes the solution of the
saddle-point problem:

max
U

min
P

L(U,P ) = min
U

max
P

L(U,P ). (21)

The Uzawa’s algorithm is simple algorithm for resolute our
problem, which we write here as:
We consider UP solution for the Poisson problem:

AU = F −BtP, (22)

by using the two formulas (20) and (22) we obtain

L(UP , P ) = −1

2
U tAU − 1

2
P tCP − F t

bP. (23)

We denote
L∗(P ) = −min

U
L(UP , P ), (24)

Therefore, the problem (21) comes down to finding P such
that

L∗(P ) ≤ L∗(q) ∀q ∈ Q, (25)

by using (23) the L∗ is a quadratic and coercive, with X is
the solution of the sensitivity problem

AX = BtD, (26)

From (22) the function U 7→ UP is a linear and

UP+TD = UP + TX, (27)

with X indicate in (26).
Therefore,

∇L∗(P ) = BU + CP + Fb. (28)

Under direction of D, we will calculate an optimal stepsize φ
such that

∇L∗(P + ψD)tD = 0, (29)

by using k := ∇L∗(P ) the ψ define by:

ψ =
−Dt(BX + CD)

ktD
. (30)



The Fletcher-Reeves conjugate gradient direction at each iter-
ation i is given by

Di = ki+1 + αiDi, (31)

αi =∥ ki ∥−2∥ ki+1 ∥2 . (32)

For more details about the Uzawa conjugate gradient see [13],
[14] and the script algorithm see [4].

V. THE NUMERICAL EXPERIMENTS

In this section, some numerical results of calculations with
the mini-element P1−Bubble/P1 will be presented. We con-
sider a test problem present below [5], our numeric experience
is summarized in the figure 2. In this simulation we take the

Fig. 2. Geometry and the boundary of the flow arround a cylinder with
circular cross section in 2D.

permeability tensor is a matrix defined by:

K−1 =

(
α1 0
0 α2

)
, (33)

with α1 and α2 are two positive reals. This matrix satisfy
the condition (3). Using MATLAB software and change the
value of the component of permeability matrix. We take in this
example with the Newtonian fluid vescosity and the physical
dynamic viscosity equals one (i.e µ = µ̃ = 1).
REMARK: If K → ∞ then equations (1) turn to be the classic
Stokes problem, and our problem coincides to the classical
Darcy’s problem for µ̃ tends to 0.
We consider the homogeneous boundary conditions of Ω
except:
In the left boundary we give

u1 =
0.3

0.412
× 4y(0.41− y); u2 = 0, (34)

and in the outflow boundary we give

u1 =
0.3

0.412
× 4y(0.41− y); u2 = 0 (35)

If the domain Ω is bounded and simply connected, in order to
compute the stream-function φ, we have to solve the Poisson
Neumann problem

−∆φ = ϖ in Ω, (36)

∂nφ = −u.τ, (37)

where ϖ = ∂1u2 − ∂2u1 is the vorticity and τ the counter-
clockwise oriented unit tangent vector at ∂Ω. The variational
formulation of (36)-(37) is find φ ∈ H1(Ω) such that:

⟨∇φ,∇ϕ⟩ = ⟨u1, ∂2ϕ⟩ − ⟨u2, ∂1ϕ⟩, ∀ϕ ∈ H1(Ω). (38)

Problem (36)-(37) has a unique solution in H1(Ω).
By using the P1 finite element, we obtain the algebraic system:

Rφ = Bt
2u1 +Bt

1u2, (39)

where R is the two dimensional Laplacian matrix. To ensure
the uniqueness for the problem (39), we impose the pressure
φ equal zero at an arbitrary node.
Under the conditions declared previously, here our different
simulation:
Velocity: The Figures (3)–(4) present the velocity vectors in
the different cases: α1 = α2 = 1, next α1 = 1 and α2 = 10−4.

Fig. 3. Velocity field, α1 = α2 = 1.

Fig. 4. Velocity field, α1 = 1 and α2 = 10−4.

Isobar: The Figures (5)–(6) present the isobar lines in the
different cases: α1 = α2 = 1, next α1 = 1 and α2 = 10−4.

Fig. 5. Isobar lines, α1 = α2 = 1.

Fig. 6. Isobar lines, α1 = 1 and α2 = 10−4.

Streamlines: The Figures (7)–(8) present the streamlines in
the different cases: α1 = α2 = 1, next α1 = 1 and α2 = 10−4.
The streamlines are obtained by plotting the solution of the
variational problem (38).



Fig. 7. Streamlines, α1 = α2 = 1.

Fig. 8. Streamlines, α1 = 1 and α2 = 10−4.

CONCLUSION

We were interested in this work on the numeric solution
of Brinkman’s equations in a heterogeneous medium media
porous. In this study, we used discretization of mini-element
methods P1−Bubble/P1. We use a Uzawa conjugate gradient
method to accelerate the approach solution for the linear
system. The numeric solution has shown the accuracy and
efficiency of the proposed finite element method. This method
is very important to study a more complex problem, for
example very highly heterogeneous porous media.
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